Educational and Technological Advantages of WME

P. Wang M. Mikusa and the WME Team
Kent State University
WME Project at Kent State University

- Paul’s ICM WME group started research around 2000
- Michael and students from College of Education joined the WME effort in 2003.
- Obtained OBR Research Challenge support for 2004.
- Built website, piloted modules and lessons at Kimpton Middle. Added many collaborators and published papers.
- Seeking continued funding and exploring collaborations with ORC, ODE, and OBR (2006).
- WME project site: wme.cs.kent.edu

The WME Integration

- Modules & Lessons
- Comp/Edu Services
- Assessment
- Manipulatives
- Interactions
- Research Info
- A Support
- Remedial Lessons

OBR06-3
Collaboration with Local Schools

- Kimpton Middle School, Stow Ohio
- Lakeview Elementary School, Stow Ohio
- Lake Middle School, Hartville, Ohio
- Shore Junior High, Mentor Ohio

Important Technical Characteristics of WME

- Open-source and compliant to open standards.
- Leading-edge support for mathematics: formula representation, editing, and display; interactive geometry; graphing/plotting; animation.
- Interactive, integral, self-contained, and classroom-ready.
- Easy to configure and customize at multiple levels.
- Interoperable modules, lessons, manipulatives, tools, and services.
- School-centered: WME sites are deployed and operated per-school.
The WME Architecture

WME Components

- **Manipulatives, Active Lessons and Topic Modules**
- Teacher guide and assessment support
- Client-side Support—regular browsers, javascript, SVG viewer, DOM, browser plug-in.
- Server-side Support—active pages, database
- Content-markup Support—MeML, page translation and MESP service access.
- WME Services—MathGlossary, MathChat, MathBoard, ...
- Protocols—MESP, MCP and SOAP/REST.
Manipulatives

Example 1, Example 2, Example 3.

WME Model Site Download
WME Customizations

- For each school—user accounts, grade levels, course listings, course sections.
- For each course—TM and AL selection, student list.
- For each lesson—manipulatives editing: including text, presentation, and functionality, assessment and challenge questions.

Page Customization Layers

Customizations are per-teacher and per-class.

[Diagram showing layers for Base, Teacher, and Class]
Dynamic Page Generation

- Test authoring, construction, and editing
- Online test taking
- Importing and exporting test questions
- Automatic grading and test data management
- Results evaluation, diagnoses and suggested interventions
DMAD Functionalities

- Expert Questions
- Generate Test Code
- Show/Hide Assessment Test
- Start/Re-take Assessment Test
- Submit/Store Student answers
- Display Test Grades/Results

Scalable Vector Graphics is an emerging W3C standard.

- Compactly delivers interactive graphics to support authoring and running manipulatives.
- Geometry-aware manipulatives support constraint-preserving user operations.
Inscribed Triangle of a Circle

A triangle is inscribed in a circle if all three of its vertices are on the circle.

1. An inscribed triangle is shown in the following diagram. You can drag the vertices to change the triangle.

The diagram measures the angle BAC. Make BAC a right angle. This can be done in many ways. What observations do you have when BAC becomes a right angle?
Partners

- Ohio Board of Regents (OBR)
- Ohio Resource Center (ORC)
- College of Education, Kent State University
- Institute for Computational Mathematics (ICM), Kent State University
- Kimpton Middle School, Munroe Falls (and other schools)
- Northeast Ohio Center of Excellence (NEOCEX)
- Ohio Department of Education (ODE)

What’s Next

- The Ohio vision for WME
- Goals and time lines
- Organization and Resources